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Abstract

We study the existence and nonexistence of global solutions to the degenerate evolution inequalities with singular potential
constructed from the generalized Greiner vector fields. For the proof of the existence results, we use the method of supersolution
and the modified Bessel function. The nonexistence results are established by the test function method.
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1. Introduction

Let

X j =
∂

∂x j
+ 2dy j |z|2d−2 ∂

∂l
, Y j =

∂

∂y j
− 2dx j |z|2d−2 ∂

∂l
, (1.1)

with j = 1, . . . , n, x, y ∈ Rn, l ∈ R, z = x +
√

−1y, |z| = [
∑n

j=1(x
2
j + y2

j )]
1
2 , d ≥ 1, be the generalized Greiner

vector fields. The generalized Greiner operator is defined as 1L =
∑n

j=1

(
X2

j + Y 2
j

)
. When d = 1 ,1L becomes

the sub-Laplacian 1Hn on the Heisenberg group Hn ; see Folland [1]. If d = 2, 3, . . . ,1L is the Greiner operator;
see [2]. As is well known, the vector fields X1, . . . , Xn, Y1, . . . , Yn in (1.1) do not possess left translation invariance
for d > 1 and, if d 6= 1, 2, 3, . . ., they do not meet the Hörmander condition [3].

We study the existence of global solutions to the degenerate parabolic inequality with singular potential

∂u
∂t

−1L u + λ
ψ

ρ2 u ≥ |u|
q (1.2)
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in two classes of subdomains of the half-space S := R2n+1
× (0,+∞), for suitable λ ≥ 0. Here ρ = ρ(z, l) is a

distance function (see (1.6) below), ψ =
|z|4d−2

ρ4d−2 . We also establish nonexistence results for higher-order degenerate
evolution inequalities of the form

∂ku
∂tk −1L u + λ

ψ

ρ2 u ≥ |u|
q (1.3)

in S, where λ ≥ −

(
Q−2

2

)2
.

Since Fujita’s famous classical paper [4], the studies of existence and nonexistence of global solutions to nonlinear
heat equations on the Euclidean space and on nilpotent Lie groups have attracted much interest over the past few years;
see [5–9] and the references therein. Levine and Meier [6] and Pascucci [7] obtained some sharp critical exponents for
the reaction–diffusion equation on the Euclidean space and on nilpotent Lie groups, respectively. For the Euclidean
case, Laptev [8] studied the nonexistence of global (nontrivial) solutions of some semilinear higher-order evolution
inequalities. Hamidi and Laptev [9] proved nonexistence results for semilinear higher-order evolution inequalities
with critical potential

∂ku
∂tk −1u +

λ

|x |2
u ≥ |u|

q , (x, t) ∈ Rn
× (0,+∞), λ ≥ −

(
n − 2

2

)2

, k ≥ 1,

∂k−1u
∂tk−1 (x, 0) ≥ 0, x ∈ Rn, n ≥ 3.

They found that, for some q∗(n, λ, k), the above problem has no nontrivial global solution when 1 < q ≤ q∗. Hamidi
and Laptev also established the existence of positive solutions to the parabolic inequality

∂u
∂t

−1u +
λ

|x |2
u ≥ |u|

q , λ ≥ 0

in Rn
× (0,+∞). In [9], the authors used the fact that the potential λ

|x |2
is radial on Euclidean space. Naturally one

wants to know whether the results in [9] can be generalized to inequalities with nonradial potential function or to
degenerate inequalities.

The heat equation associated with the generalized Greiner vector fields is one of the important degenerate equations.
In this present paper we study the existence and nonexistence results for semilinear degenerate evolution inequalities
formed from the generalized Greiner vector fields. In the following we describe some known facts (see [10,11]) about
the operator 1L and the family of vector fields {X1, . . . , Xn, Y1, . . . , Yn}.

Denote the generalized gradient by ∇L = (X1, . . . , Xn, Y1, . . . , Yn). A natural family of anisotropic dilations
attached to (1.1) is

δa(z, l) = (az, a2d l), a > 0, (z, l) ∈ R2n+1. (1.4)

It is easy to verify that

dδa(z, l) = aQdzdl, (1.5)

where Q := 2n+2d is the homogeneous dimension related to (1.4) and dzdl denotes the Lebesgue measure on R2n+1.
The distance function is defined by

ρ(z, l) = (|z|4d
+ l2)

1
4d . (1.6)

The next remark concerns the action of 1L on radial functions u ∈ C2 depending only on ρ(z, l). It is easy to show
that

1Lu(ρ) = ψ

[
u′′(ρ)+

Q − 1
ρ

u′(ρ)

]
, (1.7)
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where ψ := |∇Lρ|
2

=
|z|4d−2

ρ4d−2 . Clearly 0 ≤ ψ ≤ 1. Furthermore, for functions u ∈ C2 depending only on |z|, we have

1Lu(|z|) = u′′(|z|)+
Q − 2d − 1

|z|
u′(|z|). (1.8)

We note that the potential V = λ
ψ

ρ2 in (1.2) and (1.3) is homogeneous of degree 2 with respect to the dilations δa

and it has a weaker singularity than the inverse square function in the Euclidean case.
The plan of the paper is as follows. In Section 2 we recall a recursion formula concerning the modified Bessel

function, define precisely the weak solution of problem (1.3) and establish some estimates which we shall use in
the sequel. Section 3 is devoted to the existence results for (1.2). In Section 4, we prove the nonexistence of global
solutions for higher-order degenerate evolution inequalities and systems.

2. Preliminaries and auxiliary estimates

Throughout this paper, the letter C denotes a positive constant which may vary from line to line but is independent
of the terms which will take part in any limit process. Let Iσ (r) be the modified Bessel function of order σ ; then the
following recursion formula holds (see [12]):

r I ′
σ = σ Iσ + r Iσ+1. (2.1)

Definition 2.1. Let u(z, l, t) ∈ C(R2n+1
×[0,+∞))which has locally integrable traces ∂

i u
∂t i (z, l, 0), i = 1, . . . , k −1,

on the hyperplane t = 0. The function u(z, l, t) is called a weak solution of (1.3) in S if for any non-negative test
function φ(z, l, t) with compact support, such that ∂kφ

∂tk ∈ C(R2n+1
× [0,+∞)),−1L φ + λ

ψ

ρ2φ ∈ L1(R2n+1
×

(0,+∞)), the following inequality holds:∫∫∫
S

u
[
(−1)k

∂kφ

∂tk −1L φ + λ
ψ

ρ2φ

]
dzdldt ≥

∫∫
R2n+1

∂k−1u
∂tk−1 (z, l, 0)φ(z, l, 0)dzdl

+

k−1∑
i=1

(−1)i
∫∫
R2n+1

∂k−1−i u
∂tk−1−i (z, l, 0)

∂ iφ

∂t i (z, l, 0)dzdl

+

∫∫∫
S
|u|

qφdzdldt. (2.2)

The definition of weak solutions of (1.3) in any subdomain Ω ⊂ S is analogous.
Define the parameters

s∗
=

Q − 2
2

+

√(
Q − 2

2

)2

+ λ, s∗ = −
Q − 2

2
+

√(
Q − 2

2

)2

+ λ. (2.3)

Using (1.7) one easily sees that(
−1L +λ

ψ

ρ2(z, l)

)
ρs∗(z, l) =

(
−1L +λ

ψ

ρ2(z, l)

)
ρ−s∗

(z, l) = 0 (2.4)

for any (z, l) ∈ R2n+1
\{(0, 0)}. In the following we construct a test function and obtain some estimates.

Let ϕ : [0,+∞) → [0, 1] be a smooth function which equals 1 on the interval [0, 1] and 0 on the interval [2,+∞).
Let

Φ = ϕkp0

for some p0 > 1 and k ∈ N. A direct computation shows that

|Φ( j)
|
p

≤

∣∣∣∣∣
j∑

i=1

C
(kp0)!

(kp0 − i)!
ϕkp0−i

∣∣∣∣∣
p

≤ CΦ p−1 for any 1 ≤ j ≤ k, 1 < p ≤ p0. (2.5)
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Let θ > 0 and R > 1; for the function Φ( t
Rθ )we have supp

∣∣∣Φ (
t

Rθ

)∣∣∣ =
{
(z, l, t) ∈ S : 0 ≤ t ≤ 2Rθ

}
, supp|

dkΦ( t
Rθ
)

dtk |

= {(z, l, t) ∈ S : Rθ ≤ t ≤ 2Rθ } and

∫
supp

∣∣∣∣∣∣
dkΦ

(
t

Rθ

)
dtk

∣∣∣∣∣∣

∣∣∣∣∣∣
dkΦ

(
t

Rθ

)
dtk

∣∣∣∣∣∣
p

1

Φ p−1
(

t
Rθ

)dt ≤ C R−θ(kp−1). (2.6)

Set

ψR(z, l) := ΨR(ρ(z, l)) := ρs(z, l)Φ
(
ρ(z, l)

R

)
, (2.7)

where the parameter s will be chosen later. It follows from (2.5) that

∣∣Ψ ′

R(ρ)
∣∣p

≤ CΦ p−1
( ρ

R

)
ρ(s−1)p

(
1 +

ρ p

R p

)
, (2.8)

∣∣Ψ ′′

R(ρ)
∣∣p

≤ CΦ p−1
( ρ

R

)
ρ(s−2)p

(
1 +

ρ p

R p +
ρ2p

R2p

)
. (2.9)

We then obtain for the operator A := 1L −λ
ψ

ρ2 :

|AψR(z, l)|p
= ψ p

·

∣∣∣∣Ψ ′′

R +
Q − 1
ρ

Ψ ′

R −
λ

ρ2 ΨR

∣∣∣∣p

≤ Cψ p−1
R (z, l)ρs−2p

(
1 +

ρ p

R p +
ρ2p

R2p

)
. (2.10)

If λ ≥ 0, we set s = s∗ ≥ 0. Since A(ρs∗) = 0 (from (2.4)), we then have AψR = 0 for ρ ≤ R and
supp|AψR | ⊂

{
(z, l) ∈ R2n+1

: R ≤ ρ(z, l) ≤ 2R
}
. On the other hand, 1 +

ρ p

R p +
ρ2p

R2p ≤ C for some C > 0 when

R ≤ ρ ≤ 2R. Therefore, |AψR(z, l)|p
≤ Cψ p−1

R (z, l)ρs∗−2p for R ≤ ρ ≤ 2R, which gives∫∫
supp|AψR |

|AψR(z, l)|p

ψ
p−1
R (z, l)

dzdl ≤ C
∫∫

{(z,l)∈R2n+1:R≤ρ(z,l)≤2R}

ρs∗−2pdzdl

≤ C Rs∗−2p+Q . (2.11)

Define the function

ϕR(z, l, t) := Φ
(

t
Rθ

)
ψR(z, l). (2.12)

It yields by (2.11),

∫∫∫
supp|AϕR |

|AϕR(z, l, t)|p

ϕ
p−1
R (z, l, t)

dzdldt =

∫ 2Rθ

0
Φ

(
t

Rθ

)
dt

∫∫
supp|AψR |

|AψR(z, l)|p

ψ
p−1
R (z, l)

dzdl

≤ C Rθ+s∗−2p+Q . (2.13)

Analogously, using (2.6), we get
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supp

∣∣∣∣ ∂kϕR
∂tk

∣∣∣∣
∣∣∣∣∂kϕR(z, l, t)

∂tk

∣∣∣∣p 1

ϕ
p−1
R (z, l, t)

dzdldt

=

∫
supp

∣∣∣∣∣∣
dkΦ

(
t

Rθ

)
dtk

∣∣∣∣∣∣

∣∣∣∣∣∣
dkΦ

(
t

Rθ

)
dtk

∣∣∣∣∣∣
p

1

Φ p−1
(

t
Rθ

)dt
∫∫

{(z,l)∈R2n+1:ρ(z,l)<2R}

ψR(z, l)dzdl

≤ C Rs∗+Q−θ(kp−1). (2.14)

When θ =
2
k , the power in (2.13) equals the one in (2.14): θ+ s∗ −2p + Q = s∗ + Q −θ(kp −1) = s∗ −2p + Q +

2
k .

Thus, we eventually arrive at

Jp :=

∫∫∫
supp|(−1)k ∂

kϕR
∂tk

−AϕR |

∣∣∣(−1)k ∂
kϕR
∂tk − AϕR

∣∣∣p

ϕ
p−1
R

dzdldt

≤ C Rs∗−2p+Q+
2
k . (2.15)

If −(
Q−2

2 )2 ≤ λ < 0, we then take s = −s∗
≤ 0 which gives AψR = 0 for ρ ≤ R and supp |AψR | ⊂ {(z, l) ∈

R2n+1
: R ≤ ρ ≤ 2R}. Similar to the estimates (2.11) and (2.15), we have∫∫

supp|AψR |

|AψR(z, l)|p

ψ
p−1
R (z, l)

dzdl ≤ C R−s∗
−2p+Q (2.16)

and

Jp :=

∫∫∫
supp|(−1)k ∂

kϕR
∂tk

−AϕR |

∣∣∣(−1)k ∂
kϕR
∂tk − AϕR

∣∣∣p

ϕ
p−1
R

dzdldt ≤ C R−s∗
−2p+Q+

2
k . (2.17)

3. Existence results

If Ω ⊂ R2n+1 is a domain with the property that there exists a positive constant M > 0 such that |z| ≤ M for
every (z, l) ∈ Ω , then we denote Ω by ΩM . It is easy to see that all bounded domains in R2n+1 satisfy the property
for suitable constants M > 0.

Consider the parabolic problem
∂u
∂t

−1L u + λ
ψ

ρ2 u ≥ |u|
q , (z, l, t) ∈ ΣM × (0,+∞),

u(z, l, 0) = u0(z, l) ≥ 0, (z, l) ∈ ΣM

(3.1)

with ΣM := {(z, l) ∈ ΩM : 0 ≤
λl2

|z|4d+l2 ≤

√
λ+ (

Q−2
2 )2} ⊂ ΩM and λ be such that:

√
λ+ (

Q−2
2 )2 ≥

d
2d−1 (M

2
+ Q − 2).

Theorem 3.1. If q > q∗
≡ 1 +

2
s∗+2 , then the problem (3.1) has nontrivial global solutions.

Proof. Let v(z, l, t) be a positive solution of
∂v

∂t
−1L v + λ

ψ

ρ2 v ≥ 0, (z, l, t) ∈ ΣM × (0,+∞),

v(z, l, 0) = v0(z, l) ≥ 0, (z, l) ∈ ΣM ,
(3.2)

and let

w(z, l, t) := α(t)v(z, l, t).
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Then w will be a solution of (3.1) provided

α′(t) = [α(t)]q
‖v(·, ·, t)‖q−1

L∞(ΣM )
, t > 0 (3.3)

with α(0) = α0 > 0. The solution of (3.3) will be global in t if, and only if,∫
+∞

0
‖v(·, ·, t)‖q−1

L∞(ΣM )
dt < +∞ (3.4)

and

0 < α0 <

[
(q − 1)

∫
+∞

0
‖v(·, ·, t)‖q−1

L∞(ΣM )
dt

]−
1

q−1

.

Thus, it remains to construct v(z, l, t) which satisfies (3.4). We define the nonradial function

v(z, l, t) =
1

t + 1
1

|z|
1
2 (Q−2)

Iσ

(
|z|

2(t + 1)

)
exp

(
−

|z|2 + 1
4(t + 1)

)
,

where σ := s∗ +
Q−2

2 =

√
λ+

(
Q−2

2

)2
and Iσ denotes the modified Bessel function of order σ [12]. Using (1.8) and

(2.1) we arrive at for the operator P :=
∂
∂t −1L +λ

ψ

ρ2 and the function v,

Pv(z, l, t) = ℵ

{[
(Q − 2)(Q − 4d − 2)

4
−

d|z|2

t + 1
+

|z|2

4(t + 1)2
+ λψ1+

1
2d−1

]
Iσ

+
(2d − 1)|z|

2(t + 1)
I ′
σ −

|z|2

4(t + 1)2
I ′′
σ

}
= ℵ

{[
−d(Q − 2)−

d|z|2

t + 1
− λ

(
1 − ψ1+

1
2d−1

)]
Iσ +

d|z|
t + 1

I ′
σ

}

= ℵ


[
−d(Q − 2)−

d|z|2

t + 1
− λ

(
1 − ψ1+

1
2d−1

)]
Iσ +

d|z|
t + 1

Iσ+1

+ 2d

√
λ+

(
Q − 2

2

)2

Iσ

 , (3.5)

with ℵ =
1

t+1
1

|z|
1
2 (Q+2)

exp(− |z|2+1
4(t+1) ) ≥ 0. Since

√
λ+ (

Q−2
2 )2 ≥

d
2d−1 (M

2
+ Q − 2), it follows from (3.5) that

Pv(z, l, t) ≥ 0 in ΣM × (0,+∞). Recall the asymptotic behaviours of Iσ [12]:

Iσ (r) ≈


rσ

2σΓ (σ + 1)
, as r → 0+,

er
√

2πr
, as r → +∞.

(3.6)

Since ‖v(·, ·, t)‖q−1
L∞(ΣM )

= (t + 1)−
q−1

q∗−1 [(t + 1)
1

q∗−1 ‖v(·, ·, t)‖L∞(ΣM )]
q−1 and

∫
+∞

0 (t + 1)−
q−1

q∗−1 dt < +∞ for
any q > q∗, in order to show that (3.4) holds for any q > q∗, it suffices to show that

lim sup
t→+∞

(t + 1)
1

q∗−1 ‖v(·, ·, t)‖L∞(ΣM ) < +∞. (3.7)

Now v(z, l, t) vanishes at |z| = 0,+∞ for each t . Thus there exists 0 < r∗(t) < +∞, such that

v
(
r∗(t), t

)
= ‖v(·, ·, t)‖L∞(ΣM ).
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Let

ϑ(t) := (t + 1)
1

q∗−1 v
(
r∗(t), t

)
= (t + 1)

s∗
2

(
r∗(t)
t + 1

)−
Q−2

2
Iσ

(
r∗(t)

2(t + 1)

)
e−

(r∗(t))2+1
4(t+1) .

Set y∗(t) =
r∗(t)

2(t+1) ; then

ϑ(t) = 2−
Q−2

2 e−
1

4(t+1) (t + 1)
s∗
2

(
y∗(t)

)−
Q−2

2 Iσ
(
y∗(t)

)
e−(t+1)(y∗(t))

2
.

Suppose that, on some sequence {tk}k∈N, ϑ(tk) → +∞ as tk → +∞. If, on some subsequence, y∗(tk) → +∞,
then

ϑ(tk) ≈ C(tk + 1)
s∗
2

(
y∗(tk)

)−
Q−1

2 ey∗(tk )e−(tk+1)(y∗(tk ))
2

as tk → +∞,

which implies that ϑ(tk) → 0, as tk → +∞, on such a subsequence. If, on the other hand, y∗(tk) → 0,

ϑ(tk) ≈ C
[
(tk + 1)(y∗(tk))2

] s∗
2 e−(tk+1)(y∗(tk ))

2
as tk → +∞

from which we conclude that ϑ(tk) is bounded, since r
s∗
2 e−r is bounded on [0,+∞). Therefore if ϑ(tk) → +∞, we

must have two constants A and B such that the sequence {y∗(tk)}k∈N satisfies

0 < A ≤ y∗(tk) ≤ B < +∞.

In this case, the expression ϑ(tk) is clearly bounded.
Therefore, there is no sequence {tk}k∈N such that ϑ(tk) → +∞ as tk → +∞. This ends the proof. �

Next, we extend the existence result to the following exterior problem of the parabolic inequality
∂u
∂t

−1L u + λ
ψ

ρ2 u ≥ |u|
q , (z, l, t) ∈ D × (0, T ), λ ≥ 0, T > 0,

u(z, l, 0) = ū0(z, l) ≥ 0, (z, l) ∈ D,
(3.8)

where D ⊂ R2n+1 satisfies the condition that (ρ(z,l)−1)2
4(T +1) ≥ 1 +

√
λ+ (

Q−2
2 )2 for every (z, l) ∈ D.

Theorem 3.2. If q > 1 +
2

s∗+2 , then nontrivial global solutions of (3.8) exist.

Proof. Let v̄(z, l, t) be a positive solution of P v̄ ≥ 0 on D × [0, T ], with v̄(z, l, 0) = v̄0(z, l) ≥ 0 on D. Let the
function w̄ be defined on D × [0, T ) by w̄(z, l, t) = ᾱ(t)v̄(z, l, t). Then w̄(z, l, t) will be a global solution of (3.8)
provided

ᾱ′(t) = [ᾱ(t)]q
‖v̄(·, ·, t)‖q−1

L∞(D) , 0 ≤ t ≤ T (3.9)

with ᾱ(0) = ᾱ0 > 0. The solution of (3.9) will be global in t if, and only if,∫
+∞

0
‖v̄(·, ·, t)‖q−1

L∞(D) dt < +∞ (3.10)

and

0 < ᾱ0 <

[
(q − 1)

∫
+∞

0
‖v̄(·, ·, t)‖q−1

L∞(D) dt
]−

1
q−1

.

Therefore, it remains to construct v̄(z, l, t) which satisfies (3.10). Consider the function

v̄(z, l, t) =
1

t + 1
1

(ρ(z, l))
1
2 (Q−2)

Iσ

(
ρ(z, l)

2(t + 1)

)
exp

(
−
ρ2(z, l)+ 1

4(t + 1)

)
,
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where σ := s∗ +
Q−2

2 . We see after using (1.7) and (2.1) that

P v̄(z, l, t) = ℵ̄

[
−Iσ −

ρ(z, l)
2(t + 1)

I ′
σ +

ρ2(z, l)+ 1
4(t + 1)

Iσ

]

= ℵ̄

−Iσ −

√
λ+

(
Q − 2

2

)2

Iσ −
ρ(z, l)

2(t + 1)
Iσ+1 +

ρ2(z, l)+ 1
4(t + 1)

Iσ


≥ ℵ̄

−Iσ −

√
λ+

(
Q − 2

2

)2

Iσ +
(ρ(z, l)− 1)2

4(t + 1)
Iσ


≥ 0,

with ℵ̄ =
1

(t+1)2
1−ψ

(ρ(z,l))
1
2 (Q−2)

exp(−ρ2(z,l)+1
4(t+1) ), in D × [0, T ]. Hence, similar to the argument in the proof of

Theorem 3.1, we conclude the result. �

4. Nonexistence results for higher-order inequalities (systems)

First we present the nonexistence of global solutions of the problem
∂ku
∂tk −1L u + λ

ψ

ρ2 u ≥ |u|
q , (z, l, t) ∈ S, λ ≥ −

(
Q − 2

2

)2

, k ≥ 1,

∂k−1u
∂tk−1 (z, l, 0) ≥ 0, (z, l) ∈ R2n+1.

(4.1)

Theorem 4.1. If one of the following conditions holds true:

(h1) λ ≥ 0 and 1 < q ≤ q∗
= 1 +

2

s∗ +
2
k

,

(h2) −

(
Q − 2

2

)2

≤ λ < 0 and 1 < q ≤ q∗
= 1 +

2

−s∗ +
2
k

,

then the problem (4.1) has no nontrivial global solution.

Proof. Let u(z, l, t) be a global nontrivial solution of (4.1). Substituting φ(z, l, t) = ϕR(z, l, t) as a test function in
(2.2), where ϕR is as in (2.12), p = q ′ > 1, s = s∗ or s = −s∗, and θ =

2
k , and noting that ∂

k−1u
∂tk−1 (z, l, 0) ≥ 0 and

∂ iϕR
∂t i (z, l, 0) ≡ 0, i = 1, . . . , k − 1, we get∫∫∫

S
|u|

qϕRdzdldt ≤

∫∫∫
supp

∣∣∣∣(−1)k ∂
kϕR
∂tk

−AϕR

∣∣∣∣ u
[
(−1)k

∂kϕR

∂tk − AϕR

]
dzdldt. (4.2)

Using Hölder inequality for the integral on the right hand side of (4.2) yields∫∫∫
supp

∣∣∣∣(−1)k ∂
kϕR
∂tk

−AϕR

∣∣∣∣ |u|
qϕRdzdldt +

∫∫∫
{(z,l,t)∈S:ϕR=ρs (z,l)}

|u|
qρs(z, l)dzdldt

≤

∫∫∫
supp

∣∣∣∣(−1)k ∂
kϕR
∂tk

−AϕR

∣∣∣∣ |u|
qϕRdzdldt

 1
q

J
1
q′

q ′ , (4.3)

and then∫∫∫
{(z,l,t)∈S:ϕR=ρs (z,l)}

|u|
qρs(z, l)dzdldt ≤ Jq ′ . (4.4)
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First case. If λ ≥ 0, taking s = s∗, we get from (2.15) that∫∫∫
{(z,l,t)∈S:ϕR=ρs∗ (z,l)}

|u|
qρs∗(z, l)dzdldt ≤ Jq ′ ≤ C Rs∗−2q ′

+Q+
2
k . (4.5)

Since in this case 1 < q ≤ q∗
= 1 +

2
s∗+

2
k

, i.e. s∗ − 2q ′
+ Q +

2
k ≤ 0, letting R → +∞ in (4.5) leads to∫∫∫

S
|u|

qρs∗(z, l)dzdldt ≤ C.

On the other hand, from ϕR(z, l, t) ≤ ρs∗(z, l) and the general properties of the Lebesgue integral we get∫∫∫
supp

∣∣∣∣(−1)k ∂
kϕR
∂tk

−AϕR

∣∣∣∣ |u|
qϕRdzdldt ≤

∫∫∫
supp

∣∣∣∣(−1)k ∂
kϕR
∂tk

−AϕR

∣∣∣∣ |u|
qρs∗dzdldt

= ε(R) → 0

as R → +∞. Then (4.3) becomes∫∫∫
{(z,l,t)∈S:ϕR=ρs∗ (z,l)}

|u|
qρs∗(z, l)dzdldt ≤ ε

1
q (R)C

1
q′

→ 0

as R → +∞. This implies
∫∫∫
S |u|

qρs∗(z, l)dzdldt = 0. Therefore, the solution u(z, l, t) must be trivial under the
hypothesis (h1).

Second case. If λ < 0, then we can choose s = −s∗ and the estimate (2.17) gives∫∫∫
{(z,l,t)∈S:ϕR=ρ−s∗ (z,l)}

|u|
qρ−s∗

(z, l)dzdldt ≤ Jq ′ ≤ C R−s∗
−2q ′

+Q+
2
k .

Similarly, the nonexistence of nontrivial solutions is deduced in the case −s∗
− 2q ′

+ Q +
2
k ≤ 0. �

The next result deals with the inhomogeneous problem
∂ku
∂tk −1L u + λ

ψ

ρ2 u ≥ |u|
q

+ w(z, l), (z, l, t) ∈ S,

∂k−1u
∂tk−1 (z, l, 0) ≥ 0, (z, l) ∈ R2n+1

(4.6)

with w(z, l) ∈ L1
loc(R

2n+1), w(z, l) ≥ 0. The weak solution of problem (4.6) can be understood in the sense of
Definition 2.1 with the extra term

∫∫∫
Sw(z, l)φdzdldt .

Theorem 4.2. If λ ≥ 0 and 1 < q < 1 +
2
s∗ , or −(

Q−2
2 )2 ≤ λ < 0 and 1 < q < 1 +

2
−s∗

, then the Problem (4.6) has
no nontrivial global solution for any arbitrary small w(z, l) ≥ 0, w(z, l) 6≡ 0.

The proof of Theorem 4.2 is similar to that of Theorem 4.1, so we omit it. Consider the following systems

∂ku
∂tk −1L u + λ

ψ

ρ2 u ≥ |v|q1 , (z, l, t) ∈ S,

∂kv

∂tk −1L v + λ
ψ

ρ2 v ≥ |u|
q2 , (z, l, t) ∈ S,

∂k−1u
∂tk−1 (z, l, 0) ≥ 0,

∂k−1v

∂tk−1 (z, l, 0) ≥ 0, (z, l) ∈ R2n+1.

(4.7)

Theorem 4.3. Let q1, q2 > 1, γ1 =
q1+1

q1q2−1 and γ2 =
q2+1

q1q2−1 . If λ ≥ 0 and max{γ1, γ2} ≥
s∗

+
2
k

2 , or −(
Q−2

2 )2 ≤ λ <

0 and max{γ1, γ2} ≥
−s∗+ 2

k
2 , then (4.7) has no nontrivial global solution.
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Proof. We only prove the case λ ≥ 0, the other case being treated similarly. Using Hölder inequality, we deduce from
Definition 2.1 that

∫∫∫
S
|v|q1ϕRdzdldt ≤

∫∫∫
supp

∣∣∣∣(−1)k ∂
kϕR
∂tk

−AϕR

∣∣∣∣ |u|
q2ϕRdzdldt

 1
q2

J
1

q′
2

q ′

2
, (4.8)

∫∫∫
S
|u|

q2ϕRdzdldt ≤

∫∫∫
supp

∣∣∣∣(−1)k ∂
kϕR
∂tk

−AϕR

∣∣∣∣ |v|
q1ϕRdzdldt

 1
q1

J
1

q′
1

q ′

1
. (4.9)

Substituting (4.9) into (4.8) we get

∫∫∫
S
|v|q1ϕRdzdldt ≤

∫∫∫
supp

∣∣∣∣(−1)k ∂
kϕR
∂tk

−AϕR

∣∣∣∣ |v|
q1ϕRdzdldt

 1
q1q2

J
1

q′
1q2

q ′

1
J

1
q′

2
q ′

2
. (4.10)

Applying (2.15) to (4.10) yields∫∫∫
S
|v|q1ϕRdzdldt ≤

(
J q1−1

q ′

1
J q1(q2−1)

q ′

2

) 1
q1q2−1

≤ C Rs∗
+

2
k −2γ1 . (4.11)

Therefore, we can conclude that v(z, l, t) must be trivial under the hypothesis γ1 ≥
s∗

+
2
k

2 , and so also must u(z, l, t).
Analogously, substituting (4.8) into (4.9) gives∫∫∫

S
|u|

q2ϕRdzdldt ≤

(
J q2(q1−1)

q ′

1
J q2−1

q ′

2

) 1
q1q2−1

≤ C Rs∗
+

2
k −2γ2 . (4.12)

Hence, there is no nontrivial u(z, l, t) and nontrivial v(z, l, t) for γ2 ≥
s∗

+
2
k

2 . This ends the proof. �
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